The diversity that we are currently witnessing in textile products is only a prelude to a new millennium with all the technological trends and innovations that have been shown, as a result, modern technologies have emerged in the textile industries, which have occupied the top positions in the strategic areas, so that the process of textile development has become an aesthetic engineering construction process that meets the different requirements of modern designs through the modern trends of textile construction in that it is a three dimensional object, it is possible to control the composition of its structures by changing its structural dimensions at one level or more and thus changing its properties, it is possible to produce fabrics of different weight and thickness and can be formed, not only the use of woven to the areas of decoration, but also to produce specialized textiles, and the three-dimensional fabric that the thread is oriented not only in the direction of the surface, but also towards the thickness of the fabric, resulting in an increase in the strength of the thickness and the hardness of the fabric produced. The availability of different design tools with the great diversity of the possibility of producing three dimensional woven allows the possibility of designing new products from a variety of simple installation to complex, three-dimensional fabrics are a type of fabric that is manufactured by modifying the traditional textile mechanisms, it plays an important role in the production of special-purpose fabrics, textile products of increasing use in high performance fields, which are included in various industrial applications such as reinforcement compounds that are used in various fields (construction, automotive, marine applications, space, aviation...and other applications), although there is a wide range of geometric and textile variables, the three-dimensional stereogram gave designers and engineers only the attention they deserve, in the last quarter of last century or more accurately in the past 20 years due to the tremendous progress in modern high performance textile fibers. Therefore, the research aims at studying the three-dimensional technical fabrics and their types and studying the properties of these fabrics and their structural methods, which are based on a double fabric due to its structural form and characteristics, thus allowing the researchers to produce three-dimensional fabrics with high performance efficiency.

Research problem: The lack of studies and research that include the three-dimensional fabrics, its methods of construction, its applications and uses, despite the importance of this type of fabrics, as this study opens the field for researchers to produce high-performance three-dimensional fabrics.

Research goals: Studying the structural style of the double fabric and developing it up to the production of three-dimensional fabrics. The opportunity to identify the new horizons in the use of three-dimensional fabrics based on the fabric of double provides the opportunity to produce high quality technical fabrics. Knowledge of modern methods of implementation of three-dimensional fabrics. **Research methodology:** Descriptive and analytical. **Research results:** The three-dimensional fabrics are fabrics which the thickness of the cloth represents a legal value just as the length or width of the cloth, and the difference between the two and three dimensional structures is to put strings in the third direction which is the direction of the thickness. The three-dimensional solid bonding fabric is made by combining the thread sets in the three directions, the threads are threaded longitudinally in the (X) direction, and width in the (Y) direction and vertical in the (Z) direction which is responsible for the events of strength and hardness as well as the thickness in the structure of the textile is similar to the brick mold. Woven 3D fabrics can be classified based on type of 3D structures into: 3D Solid: there are three types of 3D solid (multi-layer, orthogonal, angel interlocked), these fabrics are the most popular as they not only provide the thickness but provide internal bonding through the thickness, which prevents the separation of layers in the composite materials. 3D Hollow: (flat surface, uneven surface). 3D Shell: (by differential take-up, by weave combination, by moulding, by Origami way to make a square structure). **3D Nodal. Noobing three-dimensional fabrics:** are divided into interlocking and non-interlocking “uniaxial and multiaxial” This gives the three-dimensional fabrics more advantages than other two-dimensional fabrics in terms of dimensional stability, light weight, the acquisition of all the characteristics of modern fibers which used in weaving, flexibility and diversity of design, use as a means of strengthening composite materials, bearing damage factors, low manufacturing costs due to low manpower intensity in manufacturing operations.