Confocal Images and Visual Design

Lin Wang
Department of Design, School of Arts, Southeast University, Nanjing, Jiangsu 211189, China; College of Arts, Media and Design, Northeastern University, MA 02115, USA

Zhenyi Su
Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA

Sophia Ainslie
College of Arts, Media and Design, Northeastern University, MA 02115, USA

Hui Chen
Department of Design, School of Arts, Southeast University, Nanjing, Jiangsu 211189, China.
Corresponding author. E-mail: chuidesign@163.com

Note: Lin Wang, Zhenyi Su, Sophia Ainslie, and Hui Chen contributed equally to this work and should be considered as co-first authors.

Abstract:
The laser scanning confocal microscope (LSCM) is developed from the conventional optical microscope, using a laser instead of a lamp for a light source. Confocal microscopy has several advantages over conventional optical microscopy, especially the capability to optically “section” thick specimens to get a clearer image. Specimens are labeled with one or more fluorescent probes to display distinct proteins, organelles, cells, or tissues. Some classic and non-classic visual design principles are reflected in these colorful confocal pictures, including repetition of certain elements, use of radiation, presentation of details, and application of light and shade. In the current paper, we discuss how confocal images convey these design principles by analyzing some representative pictures from confocal image competitions and give some examples of the application of these principles in visual design. Development of confocal technology opens another avenue for designers to find inspiration from nature and life, and re-construct their art works.

Keywords
- Laser scanning confocal microscope,
- Confocal microscopy,
- Visual Design,